C.U.SHAH UNIVERSITY

Summer Examination-2016

Subject Name: Advanced Mathematics

Subject Code: 2TE02AMT1 **Branch**: Diploma(All)

Semester : 2 **Date :** 06/05/2016 **Time :**10:30 To 1:30 **Marks :**70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) The distance between the points (1, 3) and (0, -4) is _____.
 - (a) $5\sqrt{2}$ (b) $2\sqrt{5}$ (c) 50 (d) None of these
- **b**) Midpoint of (2,-7) and (8,3) is _____.
 - (a) (5,2) (b) (-5,2) (c) (5,-2) (d) (-5,-2)
- c) Slope of the line x+y-8=0 is _____.
 - (a) 1 (b) -1 (c) 8 (d) -8
- d) Radius of the circle $2x^2 + 2y^2 = 4$ is _____.
 - (a) 4 (b) 2 (c) $\sqrt{2}$ (d) None of these
- e) $x \text{Intercept of line } 2x 6y + 4 = 0 \text{ is } \underline{\hspace{1cm}}$
 - (a) -2 (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) None of these
- f) If $f(x) = x^2 1$ then f(-1) =____.
 - (a) 2 (b) 0 (c) -1 (d) None of these
- $\lim_{x\to 0} \frac{\sin 4x}{\tan 7x} = \underline{\hspace{1cm}}$
 - (a) $\frac{4}{7}$ (b) $\frac{7}{4}$ (c) 1 (d) None of these
- $\mathbf{h}) \qquad \frac{\mathrm{d}\left(\sqrt{x}\right)}{\mathrm{d}x} = \underline{\hspace{1cm}}$
 - (a) $2\sqrt{x}$ (b) $\frac{1}{\sqrt{x}}$ (c) $\frac{-1}{x^2}$ (d) $\frac{1}{2\sqrt{x}}$

$$\mathbf{i}$$
) $\frac{d(\cos x)}{dx} = \underline{\hspace{1cm}}$

(a)
$$-\sec x$$
 (b) $\sec x$ (c) $-\sin x$ (d) $\sin x$

$$\mathbf{j}) \qquad \frac{\mathrm{d}\left(\tan^{-1}x\right)}{\mathrm{d}x} = \underline{\hspace{1cm}}$$

(a)
$$\frac{1}{1+x^2}$$
 (b) $\frac{-1}{1+x^2}$ (c) $\frac{1}{\sqrt{1-x^2}}$ (d) $\frac{-1}{\sqrt{1-x^2}}$

$$\mathbf{k}$$
) $\int x^n dx = \underline{\hspace{1cm}}$

(a)
$$x^{n-1} + c$$
 (b) $nx^{n-1} + c$ (c) $nx^{n} + c$ (d) None of these

1)
$$\int \frac{1}{x^2 + 1} dx = \underline{\hspace{1cm}}$$

(a)
$$\tan^{-1} x + c$$
 (b) $\sin^{-1} x + c$ (c) $\cos^{-1} x + c$ (d) $\cot^{-1} x + c$

$$\mathbf{m}$$
) $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \underline{\hspace{1cm}}$

(a)
$$\cot^{-1} \frac{x}{a} + c$$
 (b) $\tan^{-1} \frac{x}{a} + c$ (c) $\log \left| x + \sqrt{x^2 - a^2} \right| + c$ (d) none of these

n)
$$\int_{2}^{5} \frac{1}{x} dx =$$

(a)
$$\log \frac{2}{5}$$
 (b) $\log \frac{5}{2}$ (c) $\log 10$ (d) None of these

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14)

a) Show that the points (4, 8), (4, 12) and $(4 + 2\sqrt{3}, 10)$ are the vertices of an equilateral triangle. (5)

b) Prove that
$$\lim_{x \to \infty} \sqrt{x^2 + 2x} - \sqrt{x^2 - 3} = 1$$
. (5)

c) Find
$$\frac{dy}{dx}$$
 if $y = \frac{x^2 - 1}{x^2 + 1}$. (4)

Q-3 Attempt all questions (14)

a) Find the equation of a circle passing through point (-7, 1) and centre (-4, -3). (5)

b) Find
$$\frac{dy}{dx}$$
 if $y = \log \sqrt{\frac{a+x}{a-x}}$ (5)

c) Evaluate:
$$\int \frac{\cos(\log x)}{x} dx$$
 (4)

Q-4 Attempt all questions (14)

a) Find
$$\frac{dy}{dx}$$
 if $e^x + e^y = e^{x+y}$. (5)

		$y^{3} - 27$	
	b)	Evaluate: $\lim_{x \to 3} \frac{x^3 - 27}{\sqrt[3]{x} - \sqrt[3]{3}}$	(5)
	c)	Show that (3, 2), (5, 4) and (7, 6) are collinear.	(4)
Q-5		Attempt all questions	(14)
	a)	Using definition, find derivative of $y = \sin^2 x$.	(5)
	b)	Evaluate: $\int x^2 \log x dx$	(5)
	c)	Evaluate: $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos^2 x}$	(4)
Q-6		Attempt all questions	(14)
	a)	Find co ordinates of the points of trisection of the line segment joining points $A(4, 4)$ and $B(-2, 1)$.	(5)
	b)	If $f'(x) = 4x^2 + 6x - 3$ and $f(1) = 2$ then find function $f(x)$.	(5)
	۵)	The equation of motion of a particle is $S = 2t^3 + 3t^2 - 12t + 5$.	(4)
	c)	(i) Find velocity at $t = 0$. (ii) Find acceleration at $t = 1$.	
Q-7		Attempt all questions	(14)
	a)	If $y = e^x \sin x$ then prove that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$.	(5)
	b)	Prove that $\int_{0}^{\frac{\pi}{2}} \frac{\tan x}{\tan x + \cot x} dx = \frac{\pi}{4}.$	(5)
	c)	If radius of a circle $2x^2 + 2y^2 - 4x - 8y + k = 0$ is 4, find value of k.	(4)
Q-8		Attempt all questions	(14)
	a)	Find the area of the region bounded between curve $y = x^2$ and straight-line $x = 2$.	(5)
	b)	Find angle between straight lines $\sqrt{3}x - y + 1 = 0$ and $x - \sqrt{3}y + 2 = 0$.	(5)
	c)	If $f(x) = \log_2 x$, $g(x) = x^4$ then prove that $f(g(2)) = 4$.	(4)
		<u>-</u>	

